Graph Theory

|0l Training Camp 1 —-2017/2018

Bronson Rudner

What is a graph?

* Nodes
e Edges
* An edge joins exactly 2 nodes

 E.g. Cities (Nodes) connected by roads (Edges).

Typical Variations

* Edges may be directed.

* Edges may be weighted.

More Variations

* A graph could have loops.

* Multiple edges between two nodes.

Typically problems involve simple graphs, which have no loops and at most
one edge between two nodes.

Definitions

e Path

* Cycle

B-C-E-D

Definitions

* A connected graph

* A disconnected graph

3 Components

Definitions

* Tree

* Forest — a collection of trees

Definitions

* Eulerian path

O

The graph is not Eulerian. Mote that there are four vertices
with odd degree (0, 1, 3 and 4)

The graph has Eulerian Paths, for example "4301 2 0", but
rer Eulerian Cyele, Mote that there are bwo vertices with odd
degres (4 and 0}

Hamiltenian F&TL

* Hamiltonian path

Representing a graph

* A list of edges

bool operator<(edge other) {

weight < other.weight; { (1,2,3) , (2,3,5) }

void foo(vector<edge> ed

sort{edges.begin(), €

(edge e: edges)

Representing a graph

* An adjacency matrix

bool adj[N][N];
int adj[N][N];
edge adj[MN][N];

(int i = 8;]
adj[1][]]

It
J

vector<vector<intss adjﬁ”, UECtDF{iﬁf&iH; iﬂ{jj}

i < N3 ++i) {
95 J < N; +3) {
di[i][7]1;

1 3
) inf
3 5

inf)

Representing a graph

* An adjacency list

vector<vector<edge>> adj;

.

vector<vector<pair<{int,int>>> adj;

vector<vector<ints>» Edj}

(int u = 83 u < N; ++u) {
(int w: adj[u]) {

Depth first search

e Start from some node.
* Visit all nodes in a connected component.
* Walk as far as possible along a path in the graph before backtracking.

void dfs(int u) {
visited[u] = true;
(int v: adj[u]) {
(lvisited[v])

dziiuj;

1
J

visited[u] = fal

Breadth first search

void bfs(int start, wvector<vector<int:>> adj) {
([J ! ¥ J4 1
Sta rt from some nOde' vector<int» visited(adj.size(), false);
visited[start] = true;

e Visit all nodes in a
component.

* Visit nodes closest to the o emmt()s
lq.empty(}) {

Start|ng nOde f|rSt int u = q.front();
q.pop();

queue<ints q;

q.push(start);

(int v: adj[u]) {
(lvisited[v]) {
visited[v] = true;
q.push{v);

Dijkstra's Algorithm

* Used in a weighted graph.
e Determine shortest distance from one node to each of the others.
* Breadth first search using a priority queue.

D|j|<stra's Algorithm

HHCtHP‘ln.;

distance[start] = :;

priority queue<pair<int,int>>
g.push({e, start});

I:.|i

(!q.empty()) -[
int u = q.top().second;
q'P”PLJJ

(int 1 = 8; 1 < adj[u].size(); ++1i) {
int v = adj[u][1].first, weight = adj[u][i].second;

(distance[u] + weight < distance[v]) {
distance[v] = distance[u] + weight;
g.push({-distance[v], v});

Floyd’s Algorithm

* Used in a weighted graph.
 Determine shortest distance from one node to each of the others.
* Makes use of an adjacency matrix.

void floyd(vector<{vector<int>» d) {
int N = d.size();
(int k = 8; k < N; ++k)

(int 1 = @8; i < N3 ++i)

(int j = @; j < N; +j)
d[i]1[§] = min(d[i][j], d[i][k] + d[k][§1)

Minimum Spanning Tree

» Subset of edges of a weighted,
undirected graph.

* Tree, containing all nodes, with
smallest sum of weights of edges.

e Can use Prim’s or Kruskal’s
Algorithm to determine.

Prim’s Algorithm

int prim(vector<vector<pair<int,int>>» adj, int N} {
! ¥ ¥ ¥, L

* Start with a set of 1 ety et it i o
node. -

q.push{{@,8});
* Keep adding the R
node with smallest (tq.empty()) {

cost += g.top().first;

distance to some int u = q.top().second;
node currently in q-pop();

(done[u]) H
your set. done[u] = true;
(int 1 = @; 1 < adj[u].size(); ++1i) {
int v = adj[u][i].first, weight = adj[u][i].second;
g.push({-weight, v});

Kruskal’s Algorithm

e Start with each node its own component (so no edges).

* Loop through edges, from smallest to largest weight.

* If an edge joins two different components, add it to the graph.
* Makes use of the union-find data structure.

Kruskal’s Algorithm

| kruskal(vector<ed
int cost = @;
sort({edges.begin(},
(edge e: edges) 1
(union_find{e.u)} != union find{e.v)}) {

L

union_join(e.u, e.v);

cost += e.weight;

Union-find Data Structure

- — _,-'--I-I-:_ - 1 . ' [[rou] L
vector<int> p, depth; void union_join(int u, int v) {

int a = union_find{u), b = union find(wv);

void kruskal union _init(int N) {
p.resize(N}, depth.assign(N, @);

(int u = 83 w < N; ++u) p[u] = u;

¥

< depth[b]) {

(depth[a] > depth[b]) {
dy
int union find(int u) { ' I
(pLu us b;
p[u] = union find{p[u]); +depth[b];
pLuls

